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1. INTRODUCTION

The existence of antisymmetric localized vibration modes propagating along edges
of elastic wedges of linear geometry was "rst predicted in 1972 by Lagasse [1] and
Maradudin et al. [2] using numerical calculations. It was shown [1, 2] that such
modes, now often called wedge acoustic waves, are characterized by low
propagation velocity (generally much lower than that of Rayleigh waves), and their
elastic energy is concentrated in the area of about one wavelength near the wedge
tips.

Since 1972, wedge acoustic waves have been investigated both theoretically and
experimentally in a number of papers with regard to their possible applications to
signal processing devices, ultrasonic non-destructive testing, modelling vibration
behaviour of special engineering constructions, etc. (see, e.g. references [3}9] and
references therein). In particular, in the recently published paper of
Hladky-Hennion [7] dealing with "nite element calculations of wedge waves,
among other results, calculations have been carried out for the velocities of waves
propagating along the edge of a cyclindrical wedge-like structure bounded by
a circular cylinder and a conical cavity (Figure 1(a)). The results of the calculations
demonstrated frequency-dependent behaviour of the velocities of the two lowest
order wedge modes as functions of wavenumber.

The aim of this communication is to show that localized wave propagation in
this and similar wedge-like structures can be described in a more simple way, using
the approximate analytical theory of localized elastic modes in curved solid wedges
based on the geometrical-acoustics approach earlier developed by the present
author [6]. The results obtained using this theory are in good quantitative
agreement with the numerical calculations of reference [7].

2. OUTLINE OF THE THEORY

The approximate analytical theory of localized elastic waves in slender solid
wedges which will be used below is based on the geometrical acoustics approach
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Figure 1. De"nition of the in-plane radius of curvature r
0

for the cylindrical wedge-like structure
investigated in reference [7] (a), and for the similar structure bounded by a hollow cylinder and an
external conical surface (b).
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considering a wedge as a plate with a local variable thickness d. For slender wedges
of linear geometry d"xH, where H is the wedge apex angle and x is the distance
from the wedge tip measured in the middle plane. The velocities c of the localized
wedge modes propagating along the edge of linear wedge (in the y direction) are
determined in the geometrical acoustics approximation as solutions of the
Bohr}Sommerfeld-type equation [6,9]
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where b"u/c is a wavenumber of a wedge mode, u is circular frequency, k(x) is
a current local wavenumber of a #exural wave in a plate of variable thickness,
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velocities of longitudinal and shear acoustic waves in the plate material. Taking the
integral in equation (1) and solving the resulting algebraic equation yields the
extremely simple analytical expression for wedge wave velocities [6]:
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Expression (2) agrees well with the other theoretical calculations [3}5, 7] and with
the experimental results [3]. Although, strictly speaking, the geometrical acoustics
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approach is not applicable for the lowest order wedge mode (n"1) [6], in practice
it provides quite accurate results for wedge wave velocities in this case as well. The
analytical expressions for amplitude distributions of wedge modes are rather
cumbersome [6] and are not displayed here for brevity.

To calculate the velocities of wedge waves in a curved wedge one has to consider
two possible types of curved wedges: wedges curved in their middle plane (in-plane
curvature) and wedges curved perpendicular to their middle plane (anti-plane
curvature). In both these cases, one assumes that the radius of curvature is large
enough in comparison with characteristic wavelengths.

First consider the case of the in-plane curvature and assume for certainty that the
radius of curvature is positive (a convex edge) and has a value r

0
. Then, using

cylindrical coordinates in which the edge of a curved wedge is described as r"r
0
,

one can rewrite the governing equation (1) in the form [6]
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is the co-ordinate of ray turning point. Assuming the radius of curvature r
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transform from expression (3) to the approximate relation accurate in the "rst order
versus r~1
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:
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Here the co-ordinate of the turning point is now m
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Evaluating the integral in equation (4), which reduces to a tabulated integral
[10], one can "nd the expression for phase velocities of wedge waves propagating
along a convex curved edge:
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In the absence of curvature, i.e., for r
0
PR, equation (5) reverts to equation (2).

For comparison with the numerical calculations of reference [7] it is convenient
to rewrite equation (5) in the form
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where c(n)
0
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p
nH/J3 is the velocity of a wedge mode characterized by a number

n in the absence of curvature, and b(1)
0
"J3k
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p
H is a wavenumber of

a wedge mode of the "rst order in the absence of curvature.
According to equations (5) or (6), wedge waves in a wedge with positive in-plane

curvature are dispersive and their velocities decrease with the increase of b(1)
0

. For
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a wedge with a negative edge curvature (a concave edge), equations (5) and (6)
remain valid if r

0
is replaced by !r

0
.

Now consider the case of anti-plane curvature of radius r
0A

. Obviously, because
of the symmetry consideration, wedge wave velocities in such a wedge should not
depend on the sign of anti-plane curvature, i.e., they must be invariant when
replacing r

0A
by !r

0A
. This implies that the series expansion of the velocity

correction due to the e!ect of anti-plane curvature must contain only even powers
of r~1

0A
. Therefore, in the "rst approximation versus r~1

0A
, anti-plane curvature does

not a!ect wedge wave velocities since the lowest order in the velocity correction is
proportional to r~2

0A
.

Keeping all these in mind, one can easily calculate the velocities of wedge modes
propagating along a cylindrical wedge-like structure earlier considered in reference
[7] and shown in Figure 1(a). This structure is bounded by an external cylinder of
radius R and an internal conical cavity characterized by the rotation angle h and
represents a wedge with the apex angle h having both in-plane and anti-plane
curvatures. According to the discussion above, the only geometrical parameter
which matters is the radius of in-plane curvature r

0
. For the geometry under

consideration the value of r
0

is described as r
0
"R/sin(h/2). Substitution of this

value of r
0

into equation (5) or (6) gives the velocities of wedge acoustic modes for
the structure under consideration. Obviously, these velocities decrease with the
increase of frequency or b(1)

0
.

As an example of another similar structure, one can consider a cylindrical wedge
with the apex angle H formed by the intersection of a hollow cylinder of radius
R and an external conical surface (Figure 1(b)). As one can see, this case di!ers from
the previous one only by the sign of the wedge in-plane curvature which is now
negative. Therefore, r

0
in equations (5) and (6) should be replaced by !r

0
, in

agreement with the expression r
0
"R/sin(h/2) for value of apex angle H now

considered as negative. This implies that the dispersion curves of localized wedge
modes in such a structure describe the increase of wedge wave velocities with the
increase of frequency or b(1)

0
. They can be obtained by a mirror re#ection of the

dispersion curves corresponding to Figure 1(a) versus the horizontal lines
describing the mode velocities in the absence of curvature.

The developed theory can be applied also to disk-type structures bounded by two
conical surfaces characterized by the rotation angles H

1
and H

2
(Figure 2(a)) or by

a conical surface and a plane (Figure 2(b)), the latter con"guration being a particular
case of the previous structure for H

2
"n/2. To apply equations (5) or (6) to the

structure shown in Figure 2(a) one should determine its apex angle H and the radius
of in-plane curvature r

0
. It is easy to see that the corresponding expressions are

H"H
1
#H

2
and r

0
"R/cos[(h
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)/2] respectively. The radius r

0
for such

structures is always positive, and the behavior of the velocity dispersion curves of
localized modes is similar to that for the cylindrical structure shown in Figure 1(a).

The next example of wedge-like structure can be obtained by intersection of two
conical surfaces as shown in Figure 3(a) (note that such a structure generalizes both
case shown in Figure 1). The expressions for wedge apex angle and in-plane radius
of curvature in this case are H"H

1
#H

2
and r

0
"R/sin[(H

1
!H

2
)/2]. It is

interesting to see that for H
1
"H

2
(Figure 3(b)) the in-plane radius of curvature r

0



Figure 2. Examples of disk-type structures bounded by two conical surfaces (a), and by a conical
surface and a plane (b).

Figure 3. Examples of ridge-type structures bounded by two conical surfaces for H
1
OH

2
(a), and

H
1
"H

2
(&&dispersion-free'' structure) (b).
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tends to in"nity, r
0
"R. Therefore, in the "rst approximation versus r~1

0
wedge

waves in such a conical structure with H
1
"H

2
propagate without dispersion.

One can easily invent other examples of curved wedge-like structures that can be
described by the present theory. Such structures may be formed by di!erent
combinations of cylindrical, conical and plane surfaces. In particular, these may
include asymmetrical structures with variable wedge apex angles (local wedge wave
velocities in such structures are functions of a position along the edge). However,
the discussion of all such cases is beyond the scope of this communication.



Figure 4. Calculated velocities c of the "rst and second modes propagating in the duraluminium
cylindrical wedge structure shown in Figure 1(a) as functions of a wavenumber b(1)

0
of the lowest order

mode of a linear wedge: point indicate the results calculated using formula (6); solid curves show the
results of "nite element calculations [7]; broken lines indicate the velocities of the same modes in the
absence of wedge curvature, according to reference [7].
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3. COMPARISON WITH FINITE ELEMENT CALCULATIONS

To compare the results of the present theory with the existing "nite element
calculations, a duraluminium cylindrical wedge structure studied in the paper [7]
has been considered (see Figure 1(a)). The velocities c of two lowest order wedge
modes have been determined according to equatiom (6) as functions of
a wavenumber b(1)

0
of the "rst mode in the absence of curvature. Resonance e!ects

due to circumpropagation of localized wedge modes, which introduce the
discreteness in their wavenumbers, have been neglected. The parameters of
structure were the following: Young's modulus E"6)972] 1010 pa, mass density
o"2700 kg/m3, the Poisson's ratio p"0)344, wedge apex angle h"303, the
external radius R"19)5 mm, and the height of the structure h"47 mm. The
results of the current calculations (points) are shown in Figure 4 together with the
results of "nite element calculations of reference [7] (curves). One can see that the
agreement between the above described analytical theory and the results of "nite
element calculations is very good. This proves that the approximate analytical
theory works well for curved wedge-like structure under consideration.
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4. CONCLUSIONS

The approximate analytical theory of localized vibration modes in cylindrical
and conical wedge-like structures based on the geometrical-acoustics approch gives
the results which agree well with the results of more laborious "nite element
calculations. Because of its simplicity, this theory provides clear understanding of
the phenomena involved and allows one to make quick and easy calculations of
mode velocities for any cylindrical and conical wedge structures if their radii of
curvature are much larger than the wavelengths of propagating waves.
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